If roots of the quadratic equation ax^2-6x+1=0 are equal then the value of a
Answers
Answered by
1
Step-by-step explanation:
3x ^2 +ax−2=0
Since, one root is 1, then x=1
⇒ 3(1) ^2 +a(1)−2=0
⇒ 3+a−2=0
⇒ a+1=0
⇒ a=−1
⇒ Now, it is given that ax ^2+6ax−b=0 has equal roots.
∴ b ^2 −4ac=0
⇒ (6a) ^2 −4(a)(−b)=0
⇒ 36a^ 2+4ab=0
⇒ 36(−1)^ 2 +4(−1)b=0 [ Substitutinga=−1 ]
⇒ 36−4b=0
⇒ 4b=36
∴ b=9
Hope it helps MRK ME As BRAINLIEST
Similar questions