If roots of the quadratic equation mx^2-nx+k=0 are tan 33 and tan 12 find value of 2m+n+k/m
Answers
Answered by
2
Step-by-step explanation:
Given If roots of the quadratic equation mx^2-nx+k=0 are tan 33 and tan 12 find value of 2m+n+k/m
- Now given quadratic equation is mx^2 – nx + k = 0
- So comparing the given equation with ax^2 + bx + c = 0 we get
- So a = m , b = - n and c = 1
- So sum of roots α + β = - b/a = - (- n) / m = n/m
- Product of roots = αβ = c/a = k/m
- So the roots are tan 33 and tan 12 , so we get
- So tan 33 + tan 12 = n/m --------------1
- Also, tan33 tan 12 = k/m ---------------2
- Now we can write 2m + n + k = 2m/m + n/m + k/m
- = 2 + tan 33 + tan 12 + tan33 tan 12 ---------3
- We have tan (33 + 12) = tan 45
- Or tan 33 + tan 12 / 1 – tan 33 tan 12 = 1 (using tan (A + B) )
- So tan 33 + tan 12 = 1 – tan 33 tan 12
- Or tan 33 + tan 12 + tan 33 tan 12 = 1
- Substituting this value in equation 3 we get
- = 2 + 1
- = 3
- Therefore we get 2m + n + k / m = 3
Reference link will be
https://brainly.in/question/2356636
Similar questions
Social Sciences,
5 months ago
English,
5 months ago
Computer Science,
10 months ago
Physics,
1 year ago
Physics,
1 year ago
Math,
1 year ago