Math, asked by pawanpars1916, 10 months ago

If roots of the quadratic equation mx^2-nx+k=0 are tan 33 and tan 12 find value of 2m+n+k/m

Answers

Answered by knjroopa
2

Step-by-step explanation:

Given If roots of the quadratic equation mx^2-nx+k=0 are tan 33 and tan 12 find value of 2m+n+k/m

  • Now given quadratic equation is mx^2 – nx + k = 0
  • So comparing the given equation with ax^2 + bx + c = 0 we get  
  • So a = m , b = - n and c = 1
  • So sum of roots α + β = - b/a = - (- n) / m = n/m
  • Product of roots = αβ = c/a = k/m
  • So the roots are tan 33 and tan 12 , so we get
  • So tan 33 + tan 12 = n/m --------------1
  • Also, tan33 tan 12 = k/m ---------------2
  • Now we can write 2m + n + k = 2m/m + n/m + k/m
  •                                                   = 2 + tan 33 + tan 12 + tan33 tan 12 ---------3
  •                     We have tan (33 + 12) = tan 45
  •                           Or tan 33 + tan 12 / 1 – tan 33 tan 12 = 1 (using tan (A + B) )
  •                         So tan 33 + tan 12 = 1 – tan 33 tan 12
  •                      Or tan 33 + tan 12 + tan 33 tan 12 = 1
  •            Substituting this value in equation 3 we get
  •                                               = 2 + 1
  •                                            = 3
  •     Therefore we get 2m + n + k / m = 3

Reference link will be

https://brainly.in/question/2356636

Similar questions