Math, asked by Mister360, 4 months ago

If roots of the quadratic equation \bf 2x^2-6x+3=0 are \bf \alpha \:,\:\beta
Then prove that

\Large{\sf \dfrac{\alpha}{\beta}+\dfrac{\beta}{\alpha}+5\left(\dfrac{1}{\alpha}+\dfrac{1}{\beta}\right)+2\alpha\beta=17}

Answers

Answered by VishnuPriya2801
68

Answer:-

Given:-

α & β are the roots of 2x² - 6x + 3.

On comparing with the standard form of a quadratic equation i.e., ax² + bx + c = 0 we get,

  • a = 2
  • b = - 6
  • c = 3

We know that,

Sum of the roots = - b/a

⟹ α + β = - ( - 6/2)

⟹ α + β = 3 -- equation (1)

And,

Product of the roots = c/a

⟹ αβ = 3/2 -- equation (2)

Now,

We have to prove:

 \implies \sf \dfrac{\alpha}{\beta}+\dfrac{\beta}{\alpha}+5\bigg(\dfrac{1}{\alpha}+\dfrac{1}{\beta}\bigg)+2\alpha\beta=17 \\  \\  \\ \implies \sf \:  \frac{ { \alpha }^{2}  +  { \beta }^{2} }{ \alpha  \beta }  + 5 \bigg( \frac{ \beta  +  \alpha }{ \alpha  \beta }  \bigg) + 2 \alpha  \beta  = 17 \\

using + = (a + b)² - 2ab in LHS we get,

 \implies \sf \:  \dfrac{( { \alpha  +  \beta )}^{2}  - 2 \alpha  \beta }{ \frac{3}{2} }  + 5 \bigg( \frac{3}{ \frac{3}{2} }  \bigg) + 2 \times  \frac{3}{2} = 17  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ( from \: (1) \& \: (2)) \\  \\  \\   \implies \sf \:  \bigg( {(3)}^{2}  - 2 \times  \frac{3}{2}  \bigg) \times  \frac{2}{3}  + 5 \times 3 \times  \frac{2}{3}  + 3 = 17 \\  \\  \\ \implies \sf \: (9 - 3) \times  \frac{2}{3}  + 10 + 3 = 17 \\  \\  \\ \implies \sf \:6 \times  \frac{2}{3}  + 13 = 17 \\  \\  \\ \implies \sf \: 4 + 13 = 17 \\  \\  \\ \implies \sf \:17 = 17 \\

Hence, Proved.

Answered by BrainlyKilIer
26

Given,

☛ Quadratic equation is,

\bullet\:\tt{2x^2-6x+3=0}

☛ Roots of the quadratic equation are α & β.

As we know that,

✯ Sum of roots = \tt\red{\dfrac{-b}{a}} \\

➵ α + β = \tt{\dfrac{-(-6)}{2}} \\

➵ α + β = \tt{\dfrac{6}{2}} \\

➵ α + β = \bf{3}

✯ Product of roots = \tt\red{\dfrac{c}{a}} \\

➵ α.β = \tt{\dfrac{3}{2}} \\

➵ α.β = \bf{1.5}

Now,

☛ Let us assume L.H.S given as,

\checkmark\:\tt {\dfrac{\alpha}{\beta}\:+\:\dfrac{\beta}{\alpha}\:+\:5\bigg(\dfrac{1}{\alpha}\:+\:\dfrac{1}{\beta}\bigg)\:+\:2\alpha\beta\:} \\ \\

:\implies\:\tt {\dfrac{\alpha^2\:+\:\beta^2}{\alpha\:\beta}\:+\:5\bigg(\dfrac{\beta\:+\:\alpha}{\alpha\:\beta}\bigg)\:+\:2\alpha\beta\:} \\ \\

:\implies\:\tt {\dfrac{\alpha^2\:+\:\beta^2\:+\:2\alpha\beta\:-\:2\alpha\beta}{\alpha\:\beta}\:+\:5\bigg(\dfrac{\alpha\:+\:\beta}{\alpha\:\beta}\bigg)\:+\:2\alpha\beta\:} \\ \\

:\implies\:\tt {\dfrac{(\alpha\:+\:\beta)^2\:-\:2\alpha\beta}{\alpha\:\beta}\:+\:5\bigg(\dfrac{\alpha\:+\:\beta}{\alpha\:\beta}\bigg)\:+\:2\alpha\beta\:} \\ \\

:\implies\:\tt {\dfrac{3^2\:-\:(2\times{1.5})}{1.5}\:+\:5\bigg(\dfrac{3}{1.5}\bigg)\:+\:2\times{1.5}\:} \\ \\

:\implies\:\tt {\dfrac{9\:-\:3}{1.5}\:+\:5\times{2}\:+\:3\:} \\ \\

:\implies\:\tt {\dfrac{6}{1.5}\:+\:10\:+\:3\:} \\ \\

:\implies\:\tt {4\:+\:10\:+\:3\:} \\ \\

:\implies\:\bf\pink{17\:} ~~~[R.H.S]~\\ \\

∴ L.H.S = R.H.S ⠀⠀⠀[Hence proved]

Similar questions