Math, asked by AsifAhamed4, 1 year ago

if roots to the equation

( {c}^{2}  - ab) {x}^{2}  - 2(  {a}^{2}  - bc)x +  {b}^{2}  - ac = 0 \:  \: ar e \: equal \\  \\ then \: prove \: that \: either \: a = 0 \: or \:  {a}^{3}  + {b}^{3}  +  {c}^{3}  = 3abc

❌NO SPAM ❌

BEST ANSWER WILL BE MARKED AS BRAINLIEST!

Answers

Answered by BIGBANG1234
40

<b><font color = "red" >Hello Friend



⬇⬇Find your answer below⬇⬇



\mathsf{\implies Given, Equation \:  is:}


\mathsf{\implies (c^{2} - ab)x^{2}  - 2(a^{2} - bc)x + (b^{2} - ac) = 0}


\mathsf{\implies To \:  Prove : a = 0  \: or  \: a^{ 3} + b^{3}   + c^{3}  = 3abc}


\mathsf {\implies Proof : From  \: the \:  given  \: equation, we \:  have}


\mathsf{\implies a = c^{2}  - ab, \: b =  - 2(a^{2}  - bc), \: c = b ^{2}  - ac}


\textsf {It is being given that equation has real and equal roots}


\mathsf  {∴Delta = 0}


\mathsf{\implies b^{2} - 4ac = 0}


\textsf {On substituting respective values of a, b and c in above equation, we get}


\mathsf{\implies [- 2 (a^{2} - bc)]^{2} - 4(c^{2} - ab)(b^{2} - ac) = 0}



\mathsf {\implies 4(a^{2} - bc)^{2} - 4(c^{2}b^{2}  - ac^{3} - ab^{3} + a^{2}bc)  = 0}



\mathsf{\implies 4 (a^{4}  + b^{2} c^{2}  - 2a^{2} bc) - 4(c^{2}b ^{2} - ac^{3}  - ab^{3}  + a^{2}bc) = 0}



\mathsf{\implies 4a^{4}  + 4b^{2}c^{2} - 8a^{2}bc - 4c^{2}b^{2} + 4ac^{3} + 4ab^{3} - 4a^{2}bc = 0}



\mathsf{\implies 4a^{4}  - 12a^{2}bc + 4ac^{3} + 4ab^{3}   = 0}



\mathsf{\implies 4a (a^{3}  + b^{3}  + c^{3} - 3abc) = 0}



\mathsf{\implies 4a = 0}



\mathsf{\implies a = 0}



\mathsf{\implies a^{3}  + b^{3}  + c^{3} - 3abc = 0}



<big><b>Hence Proved



#BE BRAINLY



<b><marquee>Thank you

Anonymous: hey how you edit this
Anonymous: amezing
Answered by abhi569
36

I think your question needs a correction.

To Prove : a = 0 Or a^3 + b^3 + c^3 = 3abc



Given equation : ( c^2 - ab )x^2 - 2( a^2 - bc )x + ( b^2 - ac ) = 0


On comparing the given equation with ax^2 + bx + c = 0, we get the following information :

a = ( c^2 - ab ) , b = - 2( a^2 - bc ) , c = ( b^2 - ac )



⇒ Discriminant = 0

⇒ b^2 - 4ac = 0

⇒ [ -2( a^2 - bc ) ]^2 - 4( c^2 - ab )( b^2 - ac ) = 0

⇒ 4[ a^4 + b^2 c^2 - 2a^2 bc ] - 4[ c^2 b^2 - ac^3 - ab^3 + bca^2 ] = 0

⇒ [ a^4 + b^2 c^2 - 2a^2 bc ] - [ c^2 b^2 - ac^3 - ab^3 + bca^2 ] = 0

⇒ a^4 + b^2 c^2 - 2a^2 bc - c^2 b^2 + ac^3 + ab^3 - bca^2 =0  

⇒ a^4 - 2a^2 bc + ac^3 + ab^3 - bca^2 = 0

⇒ ( a )(  a^3 - 2abc + c^3 + b^3 - abc ) = 0

⇒ ( a )( a^3 - 2abc + c^3 + b^3 - abc ) = 0

⇒ ( a ) ( a^3 + b^3 + c^3 - 3abc ) = 0

             By Zero Product Rule

⇒ a^3 + b^3 + c^3 - 3abc = 0

Or a = 0


⇒ a^3 + b^3 + c^3 = 3abc

Or , a = 0


Hence, proved




BIGBANG1234: welcome
abhi569: :-)
Similar questions