if roots to the equation
❌NO SPAM ❌
BEST ANSWER WILL BE MARKED AS BRAINLIEST!
Answers
⬇⬇Find your answer below⬇⬇
#BE BRAINLY
I think your question needs a correction.
To Prove : a = 0 Or a^3 + b^3 + c^3 = 3abc
Given equation : ( c^2 - ab )x^2 - 2( a^2 - bc )x + ( b^2 - ac ) = 0
On comparing the given equation with ax^2 + bx + c = 0, we get the following information :
a = ( c^2 - ab ) , b = - 2( a^2 - bc ) , c = ( b^2 - ac )
⇒ Discriminant = 0
⇒ b^2 - 4ac = 0
⇒ [ -2( a^2 - bc ) ]^2 - 4( c^2 - ab )( b^2 - ac ) = 0
⇒ 4[ a^4 + b^2 c^2 - 2a^2 bc ] - 4[ c^2 b^2 - ac^3 - ab^3 + bca^2 ] = 0
⇒ [ a^4 + b^2 c^2 - 2a^2 bc ] - [ c^2 b^2 - ac^3 - ab^3 + bca^2 ] = 0
⇒ a^4 + b^2 c^2 - 2a^2 bc - c^2 b^2 + ac^3 + ab^3 - bca^2 =0
⇒ a^4 - 2a^2 bc + ac^3 + ab^3 - bca^2 = 0
⇒ ( a )( a^3 - 2abc + c^3 + b^3 - abc ) = 0
⇒ ( a )( a^3 - 2abc + c^3 + b^3 - abc ) = 0
⇒ ( a ) ( a^3 + b^3 + c^3 - 3abc ) = 0
By Zero Product Rule
⇒ a^3 + b^3 + c^3 - 3abc = 0
Or a = 0
⇒ a^3 + b^3 + c^3 = 3abc
Or , a = 0
Hence, proved