Math, asked by Aaryanarora8596, 1 year ago

If rootx=7-3root2 find the value if rootx+1/rootx

Answers

Answered by kavisha123
0

Answer:

210 - 90 \sqrt{2}

Step-by-step explanation:

 \sqrt{x}  = 7 - 3 \sqrt{2}

 \frac{1}{ \sqrt{x} }   = \frac{1}{7 - 3 \sqrt{2} }

 \frac{1}{ \sqrt{x } }  =  \frac{7 + 3 \sqrt{2} }{(7 - 3 \sqrt{2})(7 + 3 \sqrt{2} ) }

 \frac{1}{ \sqrt{x} }  =  \frac{7 + 3 \sqrt{2} }{49 - 18}

 \frac{1}{ \sqrt{x} }  = \frac{7 + 3 \sqrt{2} }{31}

 \sqrt{x}  +  \frac{1}{ \sqrt{x} }  = 7 - 3 \sqrt{2}  +  \frac{7 + 3 \sqrt{2} }{31}

 \sqrt{x}  +  \frac{1}{ \sqrt{x} }  =  \frac{217 - 93 \sqrt{2} + 7  + 3 \sqrt{2}  }{31}

 \sqrt{x}  +  \frac{1}{ \sqrt{x} }  = 210 - 90 \sqrt{2}

Similar questions