if rupees 16000 amounts
to rupees 22781.25 in 3 years . Find the rate of interest , if the interest is compounded annually.
Answers
Answered by
0
Answer:
Here your answer goes
Step :- 1
Given ,
Principal (P) = 16000
Amount (A) = Rs.22781.25
Time (T) = 3 years
Rate (R) = r
Step :-2
A = P(1 + \frac{r}{100} )^tA=P(1+
100
r
)
t
Put the values :-
22781.25 = 16000 (1 + \frac{r}{100} )^322781.25=16000(1+
100
r
)
3
⇒ \frac{22781.25}{16000} = (1 + \frac{r}{100} )^3
16000
22781.25
=(1+
100
r
)
3
⇒ \frac{2278125}{1600000} = (1 +\frac{r}{100} )^3
1600000
2278125
=(1+
100
r
)
3
⇒ \frac{729}{512} = (1 + \frac{r}{100} )^3
512
729
=(1+
100
r
)
3
⇒ \sqrt[3]{\frac{729}{512} }
3
512
729
= 1 + \frac{r}{100}1+
100
r
⇒ \frac{9}{8} - 1 = \frac{r}{100}
8
9
−1=
100
r
⇒ \frac{1}{8} * 100 = r
8
1
∗100=r
⇒ 12.5% = r
Therefore , the rate percent is 12.5%
↓↓
Be Brainly
Together WE go far →→
Attachments:
Similar questions