Math, asked by karunatakat04, 1 day ago

If S 16(2x+3)^3 dx = A (2x+3)^4 + C then A=​

Answers

Answered by MaheswariS
0

\underline{\textbf{Given:}}

\mathsf{\displaystyle\int\,16\,(2x+3)^3\,dx=A\,(2x+3)^4+C}

\underline{\textbf{To find:}}

\textsf{The value of A}

\underline{\textbf{Solution:}}

\underline{\textsf{Formula used:}}

\mathsf{1.\;\displaystyle\int\,x^n\,dx=\dfrac{x^{n+1}}{n+1}+C}

\mathsf{2.\;If\;\displaystyle\int\,f(x)\,dx=g(x)+C,\;then\;\int\,f(ax+b)\,dx=\dfrac{1}{a}g(ax+b)+C}

\mathsf{Consider,}

\mathsf{\displaystyle\int\,16\,(2x+3)^3\,dx=A\,(2x+3)^4+C}

\implies\mathsf{16\displaystyle\int\,(2x+3)^3\,dx=A\,(2x+3)^4+C}

\implies\mathsf{16\left(\dfrac{1}{2}\dfrac{(2x+3)^4}{4}\right)+C=A\,(2x+3)^4+C}

\implies\mathsf{8\left(\dfrac{(2x+3)^4}{4}\right)+C=A\,(2x+3)^4+C}

\implies\mathsf{2\,(2x+3)^4+C=A\,(2x+3)^4+C}

\textsf{Comparing on bothsides, we get}

\boxed{\mathsf{A=2}}

\underline{\textbf{Find more:}}

The value of integration (0-π|2)(dx/1+tan^3x)  

https://brainly.in/question/3525309#

Similar questions