Math, asked by rachitarabboni, 11 months ago

If S = (x+y)+(x² + xy + y?)+(x +x’y+xy? + y?)+...n terms,
w x? (x² - 1) y (x² - 1)
then prove that (x - y) Sn= x²(x^n -1) ÷ (x-1) - y² (y^n-1) ÷ (y-1)​

Answers

Answered by IamIronMan0
0

Answer:

 s = (x + y) +  ({x}^{2}  + + xy +   {y}^{2} ) +  {x}^{3}  + ... \\  \\  \red{saprate \: terms}\\  =  {y}^{0} (x +  {x}^{2}  + ... {x}^{n} ) +  {y}^{1} (x +  {x}^{2}  + ... {x}^{n - 1} ) + .... \\  \\  \pink{ =  \sum _{r = 0} ^{n}  {y}^{r} (x +  {x}^{2}  + .... {x}^{ n - r} ) }\\  \\  =  \sum {y}^{r} ( \frac{x( {x}^{n - r } - 1) }{x - 1} ) \\ \\  \green{break \: the \: summation \:  } \\ \{note \: that \: terms \: not \: having \: r \: can \: be \: take \: out \: of \: sum \\ \\   = \frac{x}{x - 1}  \sum {y}^{r} ( {x}^{n - r}  - 1) \\  \\  =  \frac{x}{x - 1}   \bigg\{ \sum {y}^{r} . \frac{x {}^{n} }{ {x}^{r} }  -  \sum {y}^{r}   \bigg\} \\  \\  =  \frac{x}{x - 1} \bigg\{  {x}^{n}  \sum(\frac{y {}^{} }{ {x}^{} } ) {}^{r}  -  \sum {y}^{r}   \bigg\}  \\  \\  =  \frac{x}{x - 1}  \bigg \{ {x}^{n} . \frac{(\frac{y {}^{} }{ {x}^{} } ) {}^{n} - 1  }{ \frac{y}{x}  - 1}  -  \frac{ {y}^{n}  - 1}{y - 1}  \bigg \} \\  \\  =  \frac{x}{x - 1}  \{x. \frac{ {y}^{n} -  {x}^{n}  }{y - x}  - \frac{ {y}^{n}  - 1}{y - 1}  \}

Similar questions