Math, asked by D4ESTduro2hita, 1 year ago

If S1 , S2 , S3 are the sum of n terms of three AP’s, the first term of each being unity and the respective common difference being 1, 2 , 3; prove that 2 . (S1 + S 3 =2S 2(

Answers

Answered by Omi272001
423
Formula of summation of an A.P: S_{n}= \frac{n}{2}[2a+(n-1)d] ,
where S_{n} = Summation till n terms.
                                 a = First term of sequence
                                 d = Common Difference.

Now, using this formula, we get 
                               S1 =  \frac{n+n^{2}}{2} ,
                               S2 = n^{2}, &
                               S3 =  \frac{3n^{2}-n}{2} .

Therefore, to get the desired equation, we add S1 and S3.
                    ∴ S1 + S3 =  \frac{n+n^{2}}{2} +  \frac{3n^{2}-n}{2}
                                     =  \frac{n^{2}+3n^{2}}{2}
                                     =  \frac{4n^{2}}{2}
                                     = 2n^{2}
                                     = 2(S2).

∴, S1 + S3 = 2(S2).
Hence proved.
                            
Answered by Kukkutpra
132

Please see the attachment.

Attachments:
Similar questions