If S1, S2, S3 be respectively the sums of n, 2n, 3n terms of S1 2 + S2 2=S1 (S2+S3 ).
Answers
Answer:
Step-by-step explanation:
Let the series in GP be a, ar, ar², ar³ and so on.
S₁ = Sₙ = a(rⁿ - 1) / r - 1
S₂ = S₂ₙ = a(r²ⁿ - 1) / r - 1
S₃ = S₃ₙ = a(r³ⁿ - 1) / r - 1
Now,
S₁² = [a² / (r - 1)²] * [(rⁿ - 1)²]
S₂² = [a²/(r - 1)²] * [(r²ⁿ - 1)²]
L.H.S:
S₁² + S₂² = [a² / (r - 1)²] * [(rⁿ - 1)²] + [a²/(r - 1)²] * [(r²ⁿ - 1)²]
= [a² / (r - 1)²] [(rⁿ - 1)² + (r²ⁿ - 1)²]
= [a² / (r - 1)²] [ r²ⁿ - 2rⁿ + 1 + r⁴ⁿ - 2r²ⁿ + 1]
= [a² / (r - 1)²] [ r⁴ⁿ - r²ⁿ - 2rⁿ + 2]
R.H.S:
S₁ ( S₂ + S₃) = [a(rⁿ - 1) / r - 1 ] [ a(r²ⁿ - 1) / r - 1 + a(r³ⁿ - 1) / r - 1]
= [a(rⁿ - 1) / r - 1 ] [(a /r - 1)( r²ⁿ + r³ⁿ - 2)]
= [a² / (r - 1)²] [ (rⁿ - 1)(r²ⁿ + r³ⁿ - 2)]
= [a² / (r - 1)²] [r³ⁿ - r²ⁿ + r⁴ⁿ - r³ⁿ - 2rⁿ + 2]
= [a² / (r - 1)²][ r⁴ⁿ - r²ⁿ - 2rⁿ + 2]
=> L.H.S = R.H.S
Hence proved.