If S1,S2, S3 , .... , Sm are the sums of n terms of m A.P.’s whose first terms are 1,2,3,...,mand whose common differences are 1, 3, 5,..., (2m − 1) respectively, then show that S1+S2+S3+......Sm =1/2mn(mn+1)
Answers
Step-by-step explanation:
Since , given are the sum of n terms of an AP s1, s2, s3........sm.
The first term are 1 , 2, 3.......m
and common difference are 1 ,3 , 5 ......(2m-1)
To Prove : s1 + s2 + s3......+sm = mn/2(mn +1).
Proof:
Let us first find the sum of all n terms of the AP;
∵ s = \frac{n}{2} \times [2a + (n-1)d]2n ×[2a+(n−1)d]
So,
s1 = \frac{n}{2} \times [2 \times1 + (n-1 )1]2n×[2×1+(n−1)1]
s1 = \frac{n}{2} \times [ 2 + (n-1)1]2n×[2+(n−1)1]
s2 = \frac{n}{2} \times [ 4 + (n-1)3]2n×[4+(n−1)3]
Similarly;
.
.
.
sm = \frac{n}{2} \times [ 2m + (n-1)(2m-1)]2n×[2m+(n−1)(2m−1)]
Now , we need to sum the following;
s1 + s2 + s3 + .....sm;
\frac{n}{2} \times [2 \times1 + (n-1 )1]2n×[2×1+(n−1)1] + s2 = \frac{n}{2} \times [ 4 + (n-1)3]2n×[4+(n−1)3] + ....... + \frac{n}{2} \times [ 2m + (n-1)(2m-1)]2n×[2m+(n−1)(2m−1)]
s1 + s2 + s3 + .....sm = \begin{gathered}\frac{n}{2} \times [ 2 + (n-1) + 4 + 3(n-1)\\ 6 +5(n-1) + 2m + (n-1)(2m-1)]\end{gathered}2n ×[2+(n−1)+4+3(n−1)6+5(n−1) +2m+(n−1)(2m−1)]
\frac{n}{2} \times [(2 + 4 + 6 +......2m) + (n-1) + 3(n-1) +5(n-1) +....+ (n-1)(2m-1)]2n×[(2+4+6+......2m)+(n−1)+3(n−1)+5(n−1)+....+(n−1)(2m−1)]
∴ s1 + s2 + s3 + .....sm = \frac{n}{2} \times [m (1+m)+ m^{2} (n-1)]2n×[m(1+m)+m2(n−1)]
∴ s1 + s2 + s3 + .....sm = mn/2(mn +1) proved.