if s10=20,s20=10 then s30=?
Answers
Answered by
3
Answer:
s30
HOPE IT HELPS
PLS MARK AS BRAINLIST
PLS FOLLOW ME I WILL FOLLOW BACK
Answered by
3
Step-by-step explanation:
Answer:
Step-by-step explanation:
Solution :-
Let a be the first term and d be the common difference of the given A.P.
Sum of the first n terms of an A.P,
Sn = n/2 [2a + ( n - 1)d]
Then, S(30) = 30/2[2a + (30 - 1)d] ....... (i) L.H.S
⇒ S[(20) - S(10)] = 20/2[2a + (20 - 1)d] - 10/2[2a + (10 - 1)d]
⇒ S[(20) - S(10)] = 10[2a + (20 - 1)d] - 5[2a + (10 - 1)d]
⇒ S[(20) - S(10)] = 10a + 190d - 45d .
⇒ S[(20) - S(10)] = 3(10a + 145d)
⇒ S[(20) - S(10)] = 3 × 5(2a + 29d )
⇒ S[(20) - S(10)] = 30/2[2a + (30 - 1)d] ........ (ii) R.H.S
From (i) and (ii), we get
S(30) = 3[S(20) - S(10)]
= 3[10-20]
= 3[-10]
= -30
Similar questions