Math, asked by abdulazam3250, 5 months ago

if s4=16 and s5=12 then find the value of an​

Answers

Answered by ashishks1912
0

GIVEN :

If s_4=16 and s_5=12 then find the value of a_n

TO FIND :

The ​value of a_n

SOLUTION :

Given that s_4=16 and s_5=12

We know the formula s_n=a+(n-1)d

Put n=4 in s_4=16=a+(4-1)d

a+3d=16\hfill (1)

Put n=5 in s_5=12=a+(5-1)d

a+4d=12\hfill (2)

Subtracting the equations (1) and (2) we get

a+3d=16

a+4d=12  (-)

_________

-d = 4

d=-4

Substitute the value d=-4 in equation (1)

a+3(-4)=16

a-12=16

a=16+12

a=28

The formula for nth term is a_n=a+(n-1)d

a_n=28+(n-1)(-4)

=28-4n+4

=32-4n or =4(8-n)

a_n=32-4n

The value of a_n is 32-4n

Answered by CandyCakes
0

Step-by-step explanation:

 {S}^{5}  = 35

 =  >  \frac{n}{2} [2a + (n - 1)d] = 35

 =  >  \frac{5}{2} [2a + 4d] = 35

 =  > 2a + 4d = 35 \times  \frac{2}{5}

 =  > 2a + 4d = 7 \times 2

 =  > 2a + 4d = 14 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   --------1

 {S}^{4}  = 22

 =  >  \frac{4}{2} [2a + (4 - 1)d] = 22

 =  > 2[2a + 3d] = 22

 =  > 2a + 3d = 11 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  -------- \: 2

On subtracting equation 1 and 2, we get

d = 3

Now

On substituting the value of d in equation 1, we get

 =  > 2a + 4 \times 3 = 14

 =  > 2a + 12 = 14

 =  > 2a = 2

 =  > a = 1

 5th\:term  = a + 4d

 = 3 + 4 \times 2

 = 3 + 8

 = 11

Similar questions