if sach side of a triangle is doubled, then find the percentage increase in the area of triangle
Answers
Answer:
Semi-perimeter of the triangle, s=
2
a+b+c
Area of triangle =
s(s−a)(s−b)(s−c)
.
When each side is doubled, the new sides are 2a,2b,2c.
Hence, new s
′
=
2
2a+2b+2c
=2(
2
a+b+c
)=2s
New area A
′
=
2s(2s−2a)(2s−2b)(2s−2c)
=
2×2×2×2×s(s−a)(s−b)(s−c)
=4
s(s−a)(s−b)(s−c)
.
∴ % change in Area =
A
A
′
−A
×100
=
s(s−a)(s−b)(s−c)
4
s(s−a)(s−b)(s−c)
−
s(s−a)(s−b)(s−c)
×100
=
1
4−1
×100
=300%
Step-by-step explanation:
hope it will help you
Answer:
300%
Step-by-step explanation:
Let the sides of the triangle be a,b,c
and semi perimeter =s
area of triangle=∆=√s(s-a)(s-b)(s-c)
If all the sides are doubled, then
area=√2s(2s-2a)(2s-2b)(2s-2c)
=√16s(s-a)(s-b)(s-c)
=4√s(s-a)(s-b)(s-c)
=4∆
so increase in area=4∆-∆=3∆
so percentage increase in area
=(increase in area/original area)×100%
=(3∆/∆)×100%
=(3×100)%
=300%.