Math, asked by migos, 1 year ago

if sania deposit 100000 rupees for 15% rate of interes for 2 years finds its compound interest

Answers

Answered by Anonymous
1
Given rate of interest = 15%
time taken = 2 years
sum (principle) = 1,00,000 Rs
Amount = p(1+r/100)^n
A = 1,00,000(1+15/100)^2
A = 1,00,000(23/20)^2
A = 1,00,000*529/400
A = Rs 132250
C.I = amount - principle
      = 132250 - 100000 = Rs 32250
Compound Interest is Rs 32250 
Answered by BloomingBud
1
Hello........... ^_^

Here is your answer.....

Given:-
Principal = Rs. 1,00,000
Rate of interest = 15% per annum
Time = 2years

( HERE ARE TWO DIFFERENT METHODS TO FIND )

( METHOD 1 )
first find Amount, than find C.I =>

Principal (P) = Rs. 1,00,000
Rate of interest (R) = 15% per annum
Time (n) = 2years
Amount = P {(1 +  \frac{R}{100} )}^{n}  \\  \\  Amount = 100000 {(1 +  \frac{15}{100} )}^{2}  \\  \\(15 \: and \: 100 \: are \: divisible \: by \: 5) \\( 15 \div 5 = 3) (100 \div 5 = 20) \\  \\ Amount = 100000 {(1 +  \frac{3}{20} )}^{2}  \\  \\ (take \:  \: LCM = 20) \\  \\ Amount = 100000 {( \frac{20 + 3}{20} )}^{2}  \\  \\  Amount = 100000 {( \frac{23}{20} )}^{2}  \\  \\ ( \:  \: {(23) }^{2} = 529 \:  \: ,  {(20)}^{2} = 400 \:  \:  \:  \: )  \\  \\ Amount = 100000 \times   \frac{529}{400} \\  \\ ( \:  \:  \: 100000 \div 400 = 250  \: ) \\ \\  Amount = 250 \times 529 \\  \\ Amount = 132250

Amount = Rs. 132250
C.I = Amount - Principal
C.I = 132250 - 100000 = 32250
C.I = Rs. 32250



( METHOD 2 )
find the C.I directly with C.I formula =>


Principal (P) = Rs. 1,00,000
Rate of interest (R) = 15% per annum
Time (n) = 2years

C.I = P \: [  \:  \: ( {1 +  \frac{R}{100}) }^{n}  - 1 \:  \: ] \\  \\ C.I = 100000 \: [  \:  \: ( {1 +  \frac{15}{100}) }^{2}  - 1 \:  \: ]  \\  \\  C.I = 100000 \: [  \:  \: ( {1 +  \frac{3}{20}) }^{2}  - 1 \:  \: ]   \\  \\ C.I = 100000 \: [  \:  \: ( {  \frac{20 + 3}{20}) }^{2}  - 1 \:  \: ]  \\  \\   C.I = 100000 \: [  \:  \: ( {  \frac{23}{20}) }^{2}  - 1 \:  \: ]  \\  \\  C.I = 100000 \: [  \:  \:   \frac{529}{400}  - 1 \:  \: ]  \\  \\  C.I = 100000 \: [  \:  \:  \frac{529 - 400}{400}   \:  \: ]  \\  \\  C.I = 100000 \times  \frac{129}{400}  \\  \\ (100000 \div 400 = 250) \\  \\ C.I = 250 \times 129 \\  \\ (250 \times 129 = 32250) \\  \\ C.I = 32250
C.I = Rs. 32250





Which you feel easy to do(method 1 or method 2) apply that method



Hope it helps............. ^_^
Similar questions