Math, asked by dinesh202404, 11 months ago

if say correct answer I will mark u as brainlist answer​

Attachments:

Answers

Answered by adrija7
2

Answer:

 { ({x}^{2}  - x + 1)}^{4}  - 6 {x}^{2}  {( {x}^{2} - x + 1 )}^{2}  + 5 {x}^{2} = 0 \\  =  >  { ({x}^{2}  - x + 1)}^{2}[{ ({x}^{2}  - x + 1)}^{2} - 6 {x}^{2}  \times 1 + 5 {x}^{2} ]= 0 \\  =  >  { ({x}^{2}  - x + 1)}^{2}( {x}^{4}   +  {x}^{2}  - 1 - 2 {x}^{3} - 2x +  {x}^{2}   -  {x}^{2} ) = 0 \\  =  > { ({x}^{2}  - x + 1)}^{2} ( {x}^{4}   +  {x}^{2}  - 1 - 2 {x}^{3} - 2x )= 0 \\  =  > { ({x}^{2}  - x + 1)}^{2} (  {x}^{4}  - 2 {x}^{3}  +  {x}^{2}  - 2x - 1) = 0 \\  =  >  { ({x}^{2}  - x + 1)}^{2} = 0 \\  =  > {x}^{2}  - x + 1 =  \sqrt{0}  \\  =  >  {x}^{2}  - x + 1 = 0 \\  =  >  {x}^{2}  - x - x + 1 = 0 \\  =  > x(x - 1) - 1(x - 1) = 0 \\  =  > (x - 1)(x - 1) = 0 \\  =  > (x - 1) = 0 \\  =  > x = 1

Answered by ItzStarling
3

Answer:

Heya mate Here's your answer Mark it as brainliest Follow me Xd

Attachments:
Similar questions