Math, asked by mangaldsabale, 7 months ago

If sec 0 = 13/5
show that
2 sin theta - 3 cos theta / 4 sin theta - 9 cos theta = 3​

Answers

Answered by sandy1816
7

Answer:

your answer attached in the photo

Attachments:
Answered by MysteriousAryan
11

Answer:

{\huge{\boxed{\red{\mathscr{Answer}}}}}

sec \: θ =  \frac{13}{5}

cos \: θ =  \frac{1}{secθ}

 \cosθ =  \frac{5}{13}

Now

 \sin θ =  \sqrt{1 - ( \frac{5}{13}) {}^{2}  }

 \sinθ =  \sqrt{ \frac{144}{169} }

sin \: θ =  \frac{12}{13}

So

 \frac{2 \: sin \: θ - 3 \: cos \:θ }{4 \: sin \: θ - 9 \: cos \:  θ}

→ \frac{2 \times  \frac{12}{13}  - 3 \times  \frac{5}{13} }{4 \times  \frac{12}{13} - 9 \times  \frac{5}{13}  }

→ \frac{9}{3}  \\

{\huge{\boxed{\green{\mathscr{ 3 }}}}}

Hence proved

Similar questions