Math, asked by navanshu5933, 1 year ago

If sec 0 + tan 0 = p, prove that sin=p²-1/p²+1​

Answers

Answered by Anonymous
7

● secx + tanx = p

then

 \frac{1}{ \cos \: x}  +  \frac{ \sin \: x }{ \cos \: x }  = p \\  \\  \frac{1 +  \sin \: x }{ \cos \: x}  = p \\  \\ take \: squre \: both \: side \:  \\   \frac{{(1 +  \sin \: x) }^{2} }{ { \cos \: x }^{2} }  =  {p}^{2}  \\  \\ \frac{{(1 +  \sin \: x)(1 -  \sin \: x) } }{(1 -  { \sin \: x }^{2}) }  =  {p}^{2}  \\  \\  \frac{1 +  \sin \: x }{1 -  \sin \: x }  =  {p}^{2}  \\  \\ 1 +  \sin \: x =  {p}^{2}  -  {p}^{2}  \sin \: x \\   \\  \sin \: x +  {p}^{2}  \sin \: x =  {p}^{2}  - 1 \\  \\  \sin \: x( {p}^{2}  + 1) =  {p}^{2}  - 1 \\  \\  \sin \: x =  \frac{ {p}^{2} - 1 }{ {p}^{2} + 1 }

that's proved

● keep smiling &

always shining...............:-)

Answered by syedshakeelahmed271
2

Answer:

Step-by-step explanation:

Attachments:
Similar questions