If sec 0+tan 0=p, then find the values of cos 0 and cot0
Answers
Answered by
0
ANSWER
Given secθ+tanθ=p
as we know that
sec
2
θ−tan
2
θ=1⟹(secθ−tanθ)(secθ+tanθ)=1⟹secθ−tanθ=
p
1
So secθ=
2
1
(p+
p
1
)=
2p
p
2
+1
,tanθ=
2
1
(p−
p
1
)=
2p
p
2
−1
cosecθ=
sinθ
1
=
cosθ
sinθ
cosθ
1
=
tanθ
secθ
=
2p
p
2
−1
2p
p
2
+1
=
p
2
−1
p
2
+1
Similar questions