Math, asked by akankshagite9, 1 year ago

if sec^-1(cosecx)find dy/dx ​

Answers

Answered by Anonymous
3

Let y = sec^-1 x

by rewriting in terms of secant

=> sec y = x

by differentiating with respect to x,

=> sec y tan y . y' = 1

by dividing by sec y tan y

=> y' = 1 / sec y tan y

since sec y = x and tan x = (sec²y - 1) = (x - 1)

=> y' = 1 / x ( - 1)

Answered by kaushik05
25

 \huge \boxed{  \purple{\mathfrak{solution}}}

Given:

y=

 \boxed {\bold{ {sec}^{ - 1} (cosecx)}}

To find :

dy/dx =

 \rightarrow \frac{d}{dx} ( {sec}^{ - 1} (cosecx)) \\  \\  \rightarrow  \frac{d}{dx} ( {sec}^{ - 1} (sec( \frac{\pi}{2}  -  x))) \\  \\  \rightarrow \:  \frac{d}{dx} ( \frac{\pi}{2}  - x) \\  \\  \rightarrow \:  \frac{d}{dx} ( \frac{\pi}{2} ) -  \frac{d}{dx}( x) \\  \\  \rightarrow \: 0 - 1 \\  \\  \rightarrow \:  - 1

Formula used :

  \boxed{ \bold{ \green{\star \: cosec \: x = sec( \frac{\pi}{2}  - x)}}} \\  \\    \boxed{ \bold{ \blue{\star  {sec}^{ - 1} (secx) = x}}}

Similar questions