Math, asked by jagbir1245, 7 months ago

if sec ^2 ø (1+sin ø) (1-sin ø) = K. find the value of K​

Answers

Answered by BrainlyConqueror0901
15

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Value\:of\:k=1}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

\green{\underline{\bold{Given :}}} \\  \tt:  \implies  {sec}^{2}  \:  \theta(1 + sin \:  \theta)(1 - sin \:  \theta) = k \\  \\ \red{\underline{\bold{To \: Find :}}} \\  \tt:  \implies k =?

• According to given question :

 \bold{As \: we \: know \: that} \\\tt:  \implies  k = {sec}^{2}  \:  \theta(1 + sin \:  \theta)(1 - sin \:  \theta)  \\  \\   \tt  \green\star \:  sec \:  \theta =  \frac{1}{cos \: \theta}  \\  \\  \tt:  \implies k =  \frac{1}{ {cos}^{2} \:  \theta } (1 + sin \:  \theta)(1 - sin \:  \theta) \\  \\ \tt \green  \star  \:  {cos}^{2}  \:  \theta = 1 -  {sin}^{2} \:  \theta  \\  \\  \tt:  \implies k = \frac{1}{1 -  {sin}^{2}  \:  \theta} (1 +  sin \:  \theta)(1  -  sin \:  \theta) \\   \\  \tt \green \star\: {a}^{2}  -  {b}^{2}  = (a + b)(a - b) \\ \\ \tt:  \implies k = \frac{1}{ {1}^{2}  -  {sin}^{2}  \:  \theta}(1 +  sin \:  \theta)(1  -  sin \:  \theta) \\  \\ \tt:  \implies k = \frac{(1 +  sin \:  \theta)(1  -  sin \:  \theta)}{ (1 +  sin \:  \theta)(1  -  sin \:  \theta)} \\  \\  \green{\tt:  \implies k = 1}  \\  \\   \green{\tt \therefore Value \: of \: k \: is \: 1}

Answered by Anonymous
4

Hello !

k = sec²o(1+sino)(1-sino)

K = 1/cos²o (1+sino)(1-sino) ...,............... as sec²o = 1/cos²o

K = 1/1-sin²o(1+sino)(1-sino) ................... as cos²o = 1-sin²o

K = 1/(1+sino)(1-sino)[(1+sino)(1-sino) ....... 1-sin²o = (1+sino)(1-sino)

hence, k = 1.

Similar questions