If sec 2A = cosec (A − 42°), where 2A is an acute angles, find the value of A.
Answers
Answered by
6
SOLUTION :
Given : sec 2A = cosec(A − 42°) and 2A is acute angle.
sec 2A = cosec(A − 42°)
sec 2A = sec{90–(A − 42°)}
[sec (90 - θ) = cosec θ]
sec 2A = sec{90– A + 42°}
sec 2A = sec{132°– A}
On equating both sides,
2A = {132°– A}
2A + A = 132°
3A = 132°
A = 132/3
A = 44°
Hence, the value of A is 44° .
HOPE THIS ANSWER WILL HELP YOU…
vishal6012:
hiii haryanvi
Answered by
8
ĀNSWĒR ⏬⏬
Given ▶2A = cosec (A − 42°),
90+42=2A + A
132= 3 A
A= 132/3
A= 44
THANKS ❤:)
#Nishu HARYANVI ♠
Given ▶2A = cosec (A − 42°),
90+42=2A + A
132= 3 A
A= 132/3
A= 44
THANKS ❤:)
#Nishu HARYANVI ♠
Similar questions