Math, asked by ctclutchgodyt, 2 months ago

if sec^4θ+sec^2θ=10+tan^4θ+tan^2θ then the value of sin^2θ is

Answers

Answered by MysticSohamS
0

Answer:

hey here is your solution

pls mark it as brainliest

Step-by-step explanation:

so \: here \: given \: trigonometric \: equation \: is \\ sec {}^{4}   + sec^2θ  = 10 + tan {}^{2} θ + tan {}^{4} θ

thus  \: ie \: \: sec {}^{4} θ + sec {}^{2} θ = 10 + tan {}^{2} θ(1 +  \tan {}^{2} θ) \\ ie \: sec {}^{4} θ + sec {}^{2} θ = 10 + (sec {}^{2} θ - 1).sec {}^{2} θ \\ since \: 1 + tan {}^{2} θ = sec {}^{2} θ

sec {}^{4} θ + sec {}^{2} θ = 10 + sec {}^{4} θ - sec {}^{2} θ \\ ie \: sec {}^{2} θ = 10 - sec ^{2} θ \\ 2sec {}^{2} θ = 10 \\ so \: thus \: sec {}^{2} θ = 5 \\ so \: cos {}^{2} θ = 1 \div 5 \\ since \: secθ = 1 \div cos \: θ

now \: using \\ sin {}^{2} θ + cos {}^{2} θ = 1 \\ ie \: sin {}^{2} θ = 1 - cos {}^{2} θ \\  = 1 - 1 \div 5 \\  = (5 - 1) \div 5 \\  = 4 \div 5 \\ ie \: sin {}^{2} θ = 4 \div 5

Similar questions