Math, asked by mpnaudiyal, 4 months ago

if secα=5/4,then verify the value of tanα/1+tan²α=sinα/secα​

Answers

Answered by Anonymous
1

Step-by-step explanation:

 \sec(a)  =  \frac{5}{4}  \\  \frac{1}{ \cos(a) }  =  \frac{5}{4}  \\  \cos(a)  =  \frac{4}{5}  \\ we \: know \: that \:  \sin{}^{2} a +   \cos {}^{2} a = 1 \\  \sin(a)  =  \sqrt{1 -  \cos {}^{2}  } a \\  \sin(a)  =  \sqrt{1 - ( \frac{4}{5} } ) {}^{2}  \\  \sin(a)  =  \sqrt{1 -  \frac{16}{25} }  \\  \sin(a)  =  \sqrt{ \frac{25 - 16}{25} }  \\  \sin(a)  =  \sqrt{ \frac{9}{25} }  \\  \sin(a)  =  \frac{3}{5}  \\  \tan(a)  =  \frac{ \sin(a) }{ \cos(a) }  \\  \tan(a)  =  \frac{ \frac{3}{5} }{\frac{4}{5} }  \\  \tan(a)  =  \frac{3}{4}  \\ 1 +  \tan {}^{2} a = 1 +  \frac{9}{16}  \\  \:  \:  \:   \: =  \frac{25}{16 }  \\   \frac{ \tan(a) }{1 +  \tan {}^{2}  a}  =  \frac{ \frac{3}{4} }{ \frac{25}{16} }  \\  \:  \:  \:  \:  \:   \:  \:  =  \frac{3 \times 16}{4 \times 25 }  \\   \:  \:  \:   =  \frac{12}{25}  \\  \\   \frac{ \sin(a) }{ \sec(a) }  =  \frac{ \frac{3}{5} }{ \frac{5}{4} }  \\  \:  \:  \:  \:  \:  =  \frac{12}{25}  \:  \: (proved)


mpnaudiyal: thank you
Similar questions