Math, asked by amit1122334455p2ukhj, 1 year ago

if sec A = 2/root3 then find the value of tanA/cosA+1+sinA/tanA

Answers

Answered by alien2427
14
I hope it will help u.....
Attachments:

vikaskashyap4350: not correct answer
Answered by pinquancaro
36

Answer:

\frac{\tan A}{\cos A}+\frac{1+\sin A}{\tan A}=\frac{4+9\sqrt3}{6}      

Step-by-step explanation:

Given : \sec A=\frac{2}{\sqrt3}

To find : \frac{\tan A}{\cos A}+\frac{1+\sin A}{\tan A}

Solution :

Using trigonometry identity,

\sec A=\frac{2}{\sqrt3}=\frac{H}{B}

Applying Pythagoras theorem,

H^2=B^2+P^2

2^2=\sqrt{3}^2+P^2

4=3+P^2

P^2=1

P=1

So, P=1 , H=2 , B=\sqrt{3}

We know, \sin A=\frac{P}{H}

\sin A=\frac{1}{2}

\cos A=\frac{B}{H}

\cos A=\frac{\sqrt3}{2}

\tan A=\frac{P}{B}

\tan A=\frac{1}{\sqrt 3}

Substitute all the values in the expression,

=\frac{\frac{1}{\sqrt 3}}{\frac{\sqrt3}{2}}+\frac{1+\frac{1}{2}}{\frac{1}{\sqrt 3}}

=\frac{1\times 2}{\sqrt 3\times \sqrt3}+\frac{\frac{3}{2}}{\frac{1}{\sqrt 3}}

=\frac{1\times 2}{\sqrt 3\times \sqrt3}+\frac{3\times \sqrt3}{2\times 1}

=\frac{2}{3}+\frac{3\sqrt3}{2}

=\frac{4+9\sqrt3}{6}

Therefore, \frac{\tan A}{\cos A}+\frac{1+\sin A}{\tan A}=\frac{4+9\sqrt3}{6}

Similar questions