Math, asked by akashkamboj3, 10 months ago

if sec a=5/4 then evaluate sinalpha/secalpha

Answers

Answered by BrainlyConqueror0901
3

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{\frac{sin \:  \alpha }{sec \:  \alpha }  =\frac{12}{25}}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies sec  \: \alpha  =  \frac{5}{4 }  \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies  \frac{sin \:  \alpha }{sec \:  \alpha }  = ?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies sec \:  \alpha  =  \frac{5}{4}  \\  \\  \tt:  \implies  \frac{hypotenuse}{base}  =  \frac{5}{4}  \\  \\  \bold{From \: phythagoras \: theorem} \\  \tt:  \implies  {h}^{2}  =  {p}^{2}  +  {b}^{2}  \\  \\  \tt:  \implies {5}^{2}  =  {p}^{2}  +  {4}^{2}  \\  \\ \tt:  \implies 25 - 16 =  {p}^{2}  \\  \\ \tt:  \implies p =  \sqrt{9}  \\  \\ \tt:  \implies p = 3 \\  \\  \bold{For \: finding \: value} \\  \tt:  \implies  \frac{sin \:  \alpha }{sec \:  \alpha }  =  \frac{ \frac{p}{h} }{ \frac{h}{b}}   \\  \\ \tt:  \implies  \frac{sin \:  \alpha }{sec \:  \alpha }  = \frac{ \frac{3}{5} }{ \frac{5}{4} }  \\  \\ \tt:  \implies  \frac{sin \:  \alpha }{sec \:  \alpha }  = \frac{3}{5}  \times  \frac{4}{5}  \\  \\  \green{\tt:  \implies  \frac{sin \:  \alpha }{sec \:  \alpha }  = \frac{12}{25} }

Answered by Anonymous
1

 \mathtt{ \huge{ \fbox{Solution :)}}}

Given ,

Sec(Φ) = 5/4 = H/B

By pythagoras theorem ,

(H)² = (B)² + (P)²

(5)² = (4)² + (P)²

25 = 16 + (P)²

(P)² = 9

P = √9

P = 3 units

[ ignore the negative value of P because length can't be negative ]

Now ,

 \sf \hookrightarrow \frac{Sin(Φ) }{Sec(Φ) }   =  \frac{ \frac{P}{H } }{ \frac{H}{B} } \\  \\ \sf \hookrightarrow \frac{Sin(Φ) }{Sec(Φ) } =   \frac{PB}{ {(H)}^{2} }  \\  \\  \sf \hookrightarrow \frac{Sin(Φ) }{Sec(Φ) } =  \frac{3 \times 4}{ {(5)}^{2} }  \\  \\ \sf \hookrightarrow  \frac{Sin(Φ) }{Sec(Φ) } =  \frac{12}{25}

Hence , Sin(Φ)/Sec(Φ) = 12/15

______________ Keep Smiling

Similar questions