Math, asked by bhoomiram470, 4 months ago

if sec A = root 2 find .3 cos square A +5 tan square A divided by 4 tan square A - sin square A.​

Answers

Answered by mathgenius11
4

Step-by-step explanation:

 \sec(a)  =  \sqrt{2}  \\  \frac{3 \cos {}^{2} (a)  + 5 \tan {}^{2} (a)  }{4 \tan {}^{2} (a)  -  \sin {}^{2} (a) }  \\  sec \: a =  \frac{hypotenuse}{base}  =  \frac{ \sqrt{2} }{1}  \\ so \: hypotenuse \:  \sqrt{2} and \: base = 1 \\ perpendicular = 1(pythagoras) \\ cos \: a =  \frac{base}{hypotenuse}  =  \frac{1}{ \sqrt{2} }  \\ tan \: a =  \frac{perpendicular}{base}  =  \frac{1}{1}   = 1 \\ sin \: a =  \frac{perpendicular}{hypotenuse}   =  \frac{1 } { \sqrt{2} } \\ put \: the \: values \\   = \frac{3 \times  \frac{1}{2}   + 5 \times 1}{4 \times 1 -  \frac{1}{2} }  \\ =  \frac{ \frac{3}{2}  + 5}{4 -  \frac{1}{2} }  \\  =  \frac{ \frac{13}{2} }{ \frac{7}{2} }  \\  =  \frac{13}{7}

pleaese check my answer and if I am right please mark me brain list

Similar questions
Math, 4 months ago