if sec A+tan A =5 then show that cos A-sinA= 7/13
Answers
sec²A-tan²A=1
=>(secA-tanA)(secA+tanA)=1
=>(secA-tanA)×5=1
=>secA-tanA=1/5
now...
secA+tanA=5
secA-tanA=1/5
_____________
2secA=26/5
secA=26/10=13/5
now..cosA=1/secA=5/13
now..tanA=5-13/5=12/5
therefore...
sinA=tanA×cosA=(12/5)×(5/13)=12/13
now...
L.H.S.=cosA-sinA
=(5/13)-(12/13)
=7/13=R.H.S(proved)
CosA - SinA= -7/13 if secA+tanA=5
Step-by-step explanation:
SecA + TanA = 5
=> 1/CosA + SinA/CosA = 5
=> (1 + SinA)/(Cos A) = 5
=> 1 + SinA = 5CosA
Squaring both sides
1 + Sin²A + 2SinA = 25Cos²A
=> 1 + Sin²A + 2SinA = 25 - 25Sin²A
=> 26Sin²A + 2SinA - 24 = 0
=> 13Sin²A + SinA - 12 = 0
=> SinA = (- 1 ± √1 + 624)/(2 * 13)
=> SinA = ( - 1 ± 25)/26
=> SinA = - 1 or 24/26 = 12/13
SinA = - 1 then TanA not defined
=> SinA = 12/13
1 + SinA = 5CosA
=> 1 + 12/13 = 5CosA
=> 25/13 = CosA
=> CosA = 5/13
CosA - SinA = 5/13 - 12/13
=> CosA - SinA= -7/13
Another Method :
Sec²A - Tan²A = 1
=> (SecA + TanA)(secA - TanA) = 1
=> 5(secA - TanA) = 1
=> secA - TanA = 1/5
secA + TanA = 5
Adding both
2SecA = 26/5
=> SecA = 13/5
=> CosA = 5/13
Tan A = 12/5
SinA = CosA.TanA = (5/13)(12/5) = 12/13
CosA - SinA = 5/13 - 12/13 = -7/13
Learn More :
https://brainly.in/question/13271466