Math, asked by supriyasinghbegu, 5 hours ago

if sec A + tan A = a , find the value of sec A and tan A​

Answers

Answered by MysticSohamS
1

Answer:

your solution is as follows

pls mark it as brainliest

Step-by-step explanation:

to \: find :  \\ values \: of \: sec \: A \: and \: tan \: A \\ (in \: terms \: of \: a) \\  \\ so \: here \\ sec \: A + tan \: A = a \\∴ \:  \:  sec \: A = a - tan \: A  \\  \\ we \: know \: that \\ 1 + tan {}^{2} A = sec {}^{2} A \\  \\  = (a - tan \: A) {}^{2} \:  \:  \:  \:  \:  \:   \\  \\ 1 + tan {}^{2} A= a {}^{2}  + tan {}^{2} A - 2a.tan \: A \\  \\ 2a.tan \: A = a {}^{2}  - 1 \\  \\ tan \: A =   \frac{a {}^{2} - 1 }{2a}  \\  \\ thus \: then \\ sec \: A = a - tan \: A \\  \\  = a - ( \frac{a {}^{2}  - 1}{2a}  \: ) \\  \\   = \frac{2a {}^{2} - (a {}^{2}  - 1) }{2a}  \\  \\  =  \frac{a {}^{2}  + 1}{2a}  \\  \\ sec \: A =  \frac{a {}^{2}  + 1}{2a}

Similar questions