If sec A + tan A= m and sec A- tan A, prove that mn= 1
Answers
Answered by
9
Hi friend!!
Given,
sec A + tan A= m and sec A- tan A=n
Now,
m×n=(sec A + tan A)(sec A- tan A)
Using identity (a+b)(a-b)=a²-b²,we get
mn=sec²A- tan²A
We know that sec²x- tan²x=1
→mn=1
Hence proved.
I hope this will help you
:D
Given,
sec A + tan A= m and sec A- tan A=n
Now,
m×n=(sec A + tan A)(sec A- tan A)
Using identity (a+b)(a-b)=a²-b²,we get
mn=sec²A- tan²A
We know that sec²x- tan²x=1
→mn=1
Hence proved.
I hope this will help you
:D
pradeep180:
hii
Answered by
2
Sec A + tan A = m
Sec A -tan a = n
---------------------------
Sec^2 A - tan ^2 A = mn
But sec^2 A - tan^2 A = 1 ( formula)
Hence mn = 1
Therefore solved or proved or verified whatever...
Thank u★★★
#ckc
Sec A -tan a = n
---------------------------
Sec^2 A - tan ^2 A = mn
But sec^2 A - tan^2 A = 1 ( formula)
Hence mn = 1
Therefore solved or proved or verified whatever...
Thank u★★★
#ckc
Similar questions