Math, asked by pulkit2310, 1 year ago

If sec A + tan A = p, find sec A - tan A.

Answers

Answered by guptaramanand68
17
Given that,
 \sec(x) + \tan(x) = p
Using Identity,
 { \sec }^{2} x - { \tan }^{2} x = 1
[ \sec(x) - \tan(x) ][ \sec(x) + \tan(x) ] = 1
[\sec(x) - \tan(x) ] \times p = 1
\boxed{\sec(x)-\tan(x)=\frac{1}{p}}\\
Similar questions