if sec(a)+tan(a)= p find the value of cosec(a)
Answers
Answer:
Coseca = (p² + 1)/(p²-1)
Step-by-step explanation:
Seca + tana = p
=> 1/cosa + Sina/Cosa = p
=> (1+sina)/cosa = p
Squaring both sides
=> (1+sina)²/Cos²a = p²
=> (1+Sina)²/(1-Sin²a) = p²
=> (1+Sina)²/(1+sina)(1-Sina) = p²
=> (1 +sina)/(1-Sina) = p²
=> 1 + Sina = p² - p²Sina
=> Sina(1+p²) = p²-1
=> Sina = (p²-1)/(p²+1)
Coseca = 1/Sina
=> Coseca = 1/( (p²-1)/(p²+1))
=> Coseca = (p² + 1)/(p²-1)
Answer:
Given :
sec A + tan A = p
I am replacing p by ' k '
sec A + tan A = k
We know :
sec A = H / B & tan A = P / B
H / B + P / B = k / 1
H + P / B = k / 1
So , B = 1
H + P = k
P = k - H
From pythagoras theorem :
H² = P² + B²
H² = ( H - k )² + 1
H² = H² + k² - 2 H k + 1
2 H k = k² + 1
H = k² + 1 / 2 k
P = k - H
P = k² - 1 / 2 k
Now write k = p we have :
Base = 1
Perpendicular P = P² - 1 / 2 P
Hypotenuse H = P² + 1 / 2 P
Value of cosec A = H / P
cosec A = P² + 1 / 2 P / P² - 1 / 2 P
cosec A = P² + 1 / P² - 1