Math, asked by viditsharma2222, 11 months ago

If Sec
A+ tan A =p, prove that
sin A = p²-1 upon p²+1​

Answers

Answered by Mankuthemonkey01
12

Given

secA + tanA = p

To prove

sinA = \sf\frac{p^2-1}{p^2+1}

secA + tanA = p ...............(1)

Multiply both sides with (secA - tanA)

⇒ (secA + tanA)(secA - tanA) = p(secA - tanA)

⇒ sec²A - tan²A = p(secA - tan)

Now, we know that sec²A - tan²A = 1

⇒ 1 = p(secA - tanA)

⇒ secA - tanA = 1/p ......................(2)

Now, add (1) and (2)

secA + tanA + secA - tanA = p + 1/p

2secA = \sf\frac{p^2+1}{p}

⇒ secA =  \sf\frac{p^2+1}{2p}

We know that cosA = 1/secA

⇒ cosA = \sf\frac{2p}{p^2+1}

Put value of secA in (1) to get the value of tanA

\sf\frac{p^2+1}{2p} + tanA = p

⇒ tanA = p - \sf\frac{p^2+1}{2p}

⇒ tanA = \sf\frac{2p^2 - (p^2+1)}{2p}

⇒ tanA = \sf\frac{2p^2 - p^2 -1)}{2p}

⇒ tanA =  \sf\frac{p^2 - 1}{2p}

Now, we know that

tanA = sinA/cosA

⇒ sinA = tanAcosA

Put the values of tanA and cosA

⇒ sinA =  \sf\frac{p^2 -1}{2p}\times\frac{2p}{p^2+1}

⇒ sinA = \sf\frac{p^2-1}{p^2+1}

Hence proved.

Answered by Anonymous
30

{\boxed{\mathtt{\red{To\:Porve}}}}

{\mathtt{Note \: \implies \: Here \: \theta \: = \: A }}

⇝ If sec A + tan A = p

Then sin²A = p² - 1 / p² + 1

{\boxed{\mathtt{\red{Proof}}}}

☆ sec²A - tan²A = 1

As given that p = sec A + tan A

⇝ p² = ( sec A + tan A )²

 { \mathtt{ \red{{p}^{2}    -  \:1   =  \: ( {\sec(a)  \:  +  \tan(a)  })^{2}  \:  - 1}}}

⇝ p² - 1 = sec²A + tan²A + 2 secA . tan A - 1 .

⇝ p² - 1 = sec²A -1 + tan²A + 2 secA . tanA

\boxed{ {sec}^{2} \: A \: - \: 1 \: = \: {tan}^{2}\: A}

⇝ p² - 1 = tan²A + tan²A + 2 secA. tanA

⇝ p² - 1 = 2 tan²A + 2 secA. tanA

{ \boxed{ \mathtt{ \blue{ {p}^{2}  - 1 \:  =  \: 2 \tan(a) ( \tan(a)  \:  +  \:  \sec(a) }}}}

{ \mathtt{ \red{ {p}^{2}  \:  + 1 \:  =  \: ( { \sec(a) \:  +  \tan(a)  )}^{2}  + 1}}}

⇝ p² + 1 = sec²A + tan²A + 2secA. tanA + 1

⇝ p² + 1 = sec² A + 1 + tan²A + 2 secA . tanA

\boxed{1 \: + \:  {tan}^{2} \: A\: =\: {sec}^{2} \: A }

⇝ p² + 1 = sec²A + sec²A + 2 secA tan A

⇝ p² + 1 = 2 sec²A + 2tanA secA

 {\boxed{ \mathtt{ \blue{ {p}^{2}  +  \: 1  \:  =  \: 2 \sec(a) ( \tan(a) \:  +   \sec(a) }}}}

Dividing both values :-

p²-1/p²+1 = 2 tan A( tanA + sec A) / 2 sec A ( secA + tanA)

 \implies \:  \frac{ \tan(a) }{ \sec(a) } \\

⇝ tan A =\frac{ sin \:A}{cos\:A}\\

⇝ sec A = \frac{1}{cos \:A }\\

 \implies \:  \frac{ \sin(a) }{ \cos(a) }  \times  \frac{1}{ \cos(a) }  \\

{ \boxed{ \mathtt{ \green { \implies \:  \frac{ {p}^{2} - 1 }{ {p}^{2} + 1 }  \:  =  \sin(a) }}}}

{\mathfrak{\purple{Hence\:proved}}}

Similar questions