Math, asked by sonudhakar5451, 5 months ago

If sec A + tan A = p, then find the value of cos A and sin A in terms of p.​

Answers

Answered by infinteme8
1

Answer:

1+sin a =p cos a

Step-by-step explanation:

sec a =1/cos a and tan a =sin a /cos a..

lcm is cos a then 1 +sin a / cos a = p taking cos a to the rhs we get 1+ sin a = p cos a

Answered by VishnuPriya2801
18

Answer:-

Given:

sec A + tan A = p -- equation (1).

We know that,

sec² A - tan² A = 1

using - = (a + b)(a - b) we get,

⟹ (sec A + tan A) (sec A - tan A) = 1

Putting the value of sec A + tan A from equation (1) we get,

⟹ p * (sec A - tan A) = 1

⟹ sec A - tan A = 1/p -- equation (2)

Add equations (1) & (2).

 \implies \sf \:  \sec A +  \tan \: A +  \sec \: A \:  -  \tan \: A = p  +  \frac{1}{p}  \\  \\ \implies \sf \: 2 \:  \sec A =  \frac{ {p}^{2} + 1 }{p}  \\  \\\implies \sf \sec A =  \frac{ {p}^{2} + 1 }{p}  \times  \frac{1}{2}  \\  \\ \implies \sf \red{ \sec \: A =  \frac{ {p}^{2}  + 1}{2p} }

Substitute the value of sec A in equation (1).

 \implies \sf  \frac{ {p}^{2} + 1 }{2p}  +  \tan \: A = p \\  \\ \implies \sf \tan \: A = p -  \frac{p ^{2} + 1 }{2p}  \\  \\ \implies \sf \tan \: A =  \frac{2 {p}^{2} - ( {p}^{2} + 1)  }{2p}  \\  \\ \implies \sf \tan \: A =  \frac{2 {p}^{2} -  {p}^{2}  - 1 }{2p}  \\  \\ \implies \sf \red{  \tan \: A = \frac{ {p}^{2}  - 1}{2p} }

Divide sec A by tan A.

\implies \sf \frac{ \sec \: A}{ \tan \: A}  =  \dfrac{ \frac{ {p}^{2} + 1 }{2p} }{ \frac{ {p}^{2}  - 1}{2p} }  \\  \\

using sec A = 1/cos A & tan A = sin A/cos A we get,

 \: \implies \sf \:  \frac{ \frac{1}{ \cos \: A } }{ \frac{ \sin \: A}{ \cos \: A} }  =  \frac{ {p}^{2}  + 1}{2p}  \times  \frac{2p}{  {p}^{2} - 1  }  \\  \\ \implies \sf \:  \frac{1}{ \cos \: A }  \times  \frac{ \cos \: A}{ \sin \: A}  =  \frac{ {p}^{2}  + 1}{ {p}^{2} - 1 }  \\  \\ \implies \sf \:  \frac{1}{ \sin \: A}  =  \frac{p ^{2}  + 1}{ {p}^{2}  - 1}  \\  \\ \implies \sf  \red{ \sin \: A =  \frac{ {p}^{2} - 1 }{ {p}^{2} + 1 } }

Now,

We have :

 \: \implies \sf \sec \: A=  \frac{ {p}^{2} + 1 }{2p}  \\  \\ \implies \sf \frac{1}{ \cos \: A}  =  \frac{ {p}^{2} + 1 }{2p}  \\  \\ \implies \sf \red {\cos \: A =  \frac{2p}{ {p}^{2} + 1 } }

Similar questions