if sec a + tan a = p then show that p^2 -1/p^2+1 = sin a
Answers
Answered by
3
Answer: SecA +TanA = p------(1)
⇒Sec²A - Tan²A = 1 (trignometry identity)
⇒(SecA + TanA)(SecA - TanA) = 1
⇒SecA - TanA = 1/(SecA + TanA) = 1/p----------(2)
⇒equation(1+2) secA + tanA + secA - TanA= p +1/p
2secA = p + 1/p-----------(3)
⇒equation(1-2) secA + tanA - secA + TanA= p -1/p
2TanA = p - 1/p-----------(4)
∴
dividing equation 3 by equation 4
= 2TanA/2SecA= (p-1/p)/(p+1/p)
= SinA = /
= sinA = p²-1/p²+1
hence proved
Step-by-step explanation:
Similar questions