Math, asked by pranitiparmar5218, 11 months ago

If sec a + tan a = p then the value of sin a is

Answers

Answered by shreya7473
2

Answer:

seca + tana = p

or, 1/cosa+sina/cosa=p

or, 1+sina/cosa=p

or, 1+sina=pcosa

:.sina=pcosa-1(Answer)

hope you understand :-)

Answered by Anonymous
6

\Huge{\underline{\underline{\mathfrak{Answer \colon}}}}

Given that,

\sf{sec \theta \:  +  \: tan \theta \:  = p.................(1)}

Also,

 \sf{sec \theta \:  -  \: tan \theta \:  =  \frac{1}{p}..............(2) } \\

Adding equations (1) and (2),we get:

 \sf{2sec \theta = p +  \frac{1}{p} } \\  \\   \huge{\rightarrow \:  \sf{sec \theta =  \frac{p {}^{2}  + 1}{2p} }}

We know that,

 \sf{cos \theta \:  =  \frac{1}{sec \theta}  } \\  \\   \huge{\implies \:  \sf{cos \theta =  \frac{2p}{p {}^{2}  + 1} }}

Using the relation,sin²∅ = 1 - cos²∅

 \sf{sin {}^{2} \theta \:  = 1 - ( \frac{2p}{p {}^{2}  + 1} ) {}^{2}  } \\  \\  \implies \: \sf{sin {}^{2} \theta =  \frac{p {}^{4} + 2p {}^{2} + 1 - 4p {}^{2}   }{(p {}^{2} + 1) {}^{2}  }   } \\  \\  \implies \:  \sf{sin {}^{2} \theta \:  =  \frac{(p {}^{2} - 1) {}^{2}  }{(p {}^{2} + 1) }  } \\  \\  \implies \:   \underline{\boxed{ \sf{sin \: \theta =  \pm \frac{p {}^{2} - 1 }{p {}^{2} + 1  } - }}}

Similar questions