Math, asked by aaravmittal48, 1 month ago

If sec A + tan A = x, obtain the values of sec A, tan A and sin A.

Answers

Answered by MysticSohamS
2

Answer:

hey here is your solution

pls mark it as brainliest

Step-by-step explanation:

to \: find =  \\ values \: of  :  - \\ 1.sec \: A \\ 2.tan \: A \\ 3.sin \: A \\  \\ given =  \\ sec \: A + tan \: A = x \\ tan \: A = x - sec \: A \:  \:  \:  \:  \: (1) \\  \\ we \: know \: that \\ 1 + tan {}^{2}  \: A = sec {}^{2}  \: A \\  \\ 1 + (x - sec \: A) {}^{2}  = sec {}^{2}  \: A \\ 1 + x {}^{2}  + sec {}^{2}  \: A - 2.x.sec \: A = sec {}^{2}  \: A \\  \\ 1 + x {}^{2}  = 2.x.sec  \: A \\  \\ sec \: A =  \frac{1 + x {}^{2} }{2x}  \\  \\ hence \: then \\ cos \: A =  \frac{2x}{1 + x {}^{2} }  \\  \\ now \: accordingly \\  \\ tan \: A = sec \: A - x \:  \:  \:  \:  \: from \: (1) \\  \\  =  \frac{1 + x {}^{2} }{2x}  - x \\  \\  =  \frac{1 + x {}^{2} - 2x {}^{2}  }{2x}  \\  \\  tan \:A =  \frac{1 - x {}^{2} }{2x}

so \: here \:as  \\  \: cos \: A =  \frac{2x}{1 + x {}^{2} }  \\  \\ we \: know \: that \\ sin {}^{2}  \: A + cos {}^{2}   \: A = 1 \\  \\ sin {}^{2}  \: A = 1 - cos {}^{2} A \\ \\   = 1 - ( \frac{2x}{1 + x {}^{2} }  \: ) {}^{2}  \\  \\  = 1 -  \frac{4x {}^{2} }{1 + x {}^{2}  + 2x {}^{2} }  \\  \\  =  \frac{1 + x {}^{4}  +2x {}^{2}   - 4x {}^{2} }{1 + x {}^{4} + 2x {}^{2}  }  \\  \\  =   \frac{1 + x {}^{4} - 2x {}^{2}  }{1 + x {}^{4}  + 2x {}^{2} }  \\  \\  =  \frac{(1 - x {}^{2}) {}^{2}  }{(1 + x {}^{2}) {}^{2}  }  \:  \\  \\  = ( \frac{1 - x {}^{2} }{1 + x {}^{2} } ) {}^{2}  \\  \\  taking \: square \: roots \: on \: both \: sides \\ we \: get \\  \\ sin \: A =± \:   \frac{1 - x {}^{2} }{1 + x {}^{2} }

Similar questions