Math, asked by tasidrath, 1 year ago

if sec A - tan A= x, prove that secA =1/2(x+1/x) and tan A =1/2(x-1/x)

Answers

Answered by rohitkumargupta
9
HELLO DEAR,

i think something is mistake in your questions

right questions is like that:-


if sec A - tan A= x, prove that secA =1/2(x+1/x) and (-tan A )=1/2(x-1/x)

given that:-


x = secA-tanA


1/x = 1/secA-tanA

 \frac{1}{sec \alpha - tan \alpha  }  \\  \\  \frac{1}{sec \alpha  - tan \alpha }  \times  \frac{sec \alpha  + tan \alpha }{sec \alpha  + tan \alpha  }  \\  \\  \frac{sec \alpha  + tan \alpha }{ {sec}^{2}  \alpha  -  {tan}^{2}  \alpha } \: ..............  \:   \:[ {sec}^{2} \alpha  -  {tan}^{2}  \alpha  = 1 ] \\   \\    sec \alpha  + tan \alpha .......(1)


------------------------(1)------------------------

 \frac{1}{2} (x +  \frac{1}{x} ) \\  \\  =  >  \frac{1}{2} (sec \alpha  - tan \alpha  + sec \alpha  + tan \alpha ) \\  \\   =  > \frac{1}{2} (2sec \alpha ) \\  \\  =  > sec \alpha


------------------------(2)------------------------


 \frac{1}{2} (x -  \frac{1}{x} ) \\  \\  =  >  \frac{1}{2}[(sec \alpha  - tan \alpha  - (sec \alpha  + tan \alpha )] \\  \\  =  >  \frac{1}{2} (sec \alpha  - tan \alpha  - sec \alpha  - tan \alpha ) \\  \\  =  >  \frac{1}{2} ( - 2tan \alpha ) \\  \\  =  >  - tan \alpha

I HOPE ITS HELP YOU DEAR,
THANKS
Similar questions