Math, asked by Anonymous, 1 month ago

If sec A + tan A = x, then find tan A.​

Answers

Answered by xxblackqueenxx37
45

 \: \: \huge\mathbb\colorbox{black}{\color{white}{AnSwEr}}

Solution:

Given: sec A+ tan A = x (1)

We have

sec² A tan² A = 1

 \sf \: → (sec A+ tan A) (sec A- tan A) = 1   \:  \: [a² - b² = (a + b)(a - b)]

 \sf \:  \sec(A)  -  \tan(A)  =  \frac{1}{x} →(2)

 \sf \: Subtracting  \: the  \: equation \\  \sf  \: (2) \:  from \:  (1) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \sf \: ⇒ sec A + tan A- (sec A- tan A) = x \:  -   \: \frac{1}{x}

 \sf \: ⇒ sec A+ tan A - sec A+ tan A) =  \frac{ {x}^{2} - 1 }{x}  \\

 \sf \: ⇒ 2 \:  tan A =  \frac{ {x}^{2} - 1 }{x}  \\

 \sf \: ⇒tan A =  \frac{ {x}^{2} - 1 }{2x}  \\

 \\  \\

hope it was helpful to you

Answered by NirmalPandya
2

Given:

Sec A + tan A = x

To find:

Value of tan A

Solution:

By trignometric property,

Sec^{2}A=tan^{2}A+1

Sec^{2}A-tan^{2}A=1

Sec^{2}A-tan^{2}A is of the form a^{2}-b^{2}=(a+b)(a-b)

(Sec A + tan A)(Sec A-tan A) = 1...(1)

SecA+tanA=x...(2)  (given)

Substituting equation (2) in equation (1)

x(SecA-tanA)=1

Sec A-tan A=\frac{1}{x}

tanA=SecA+\frac{1}{x}

Value of tan A is given by, tanA=SecA+\frac{1}{x}

Similar questions