Math, asked by Arnavkumar3333, 7 months ago

If (sec A-tan A) = x then prove that 1+x^2/1-x^2=cosec A​

Answers

Answered by AlluringNightingale
8

Given :

(secA - tanA) = x

To prove :

(1 + x²)/(1 - x²) = cosecA

Proof :

We have ;

secA - tanA = x

=> x = secA - tanA

Now ,

Squaring both the sides , we have ;

=> x² = (secA - tanA)²

=> x² = sec²A + tan²A + 2•secA•tanA

Now ,

Applying componendo and dividendo in above equation , we get ;

  =  > \frac{ {x}^{2}  + 1}{ {x}^{2} - 1 }  =   \frac{ {sec}^{2}A +  {tan}^{2} A + 2. secA.tanA + 1 }{{sec}^{2}A +  {tan}^{2}A + 2. secA.tanA  - 1}

  =  > \frac{ {x}^{2}  + 1}{ {x}^{2} - 1 }  =   \frac{ {sec}^{2}A + ( {tan}^{2} A + 1) + 2. secA.tanA  }{({sec}^{2}A - 1) +  {tan}^{2} A + 2. secA.tanA }

  =  > \frac{ {x}^{2}  + 1}{ {x}^{2} - 1 }=   \frac{ {sec}^{2}A +  {sec}^{2} A+ 2. secA.tanA  }{{tan}^{2}A  +  {tan}^{2} A + 2. secA.tanA  }

  =  > \frac{ {x}^{2}  + 1}{ {x}^{2} - 1 }=   \frac{ 2.{sec}^{2} A+ 2. secA.tanA  }{2.{tan}^{2}A  + 2. secA.tanA  }

  =  > \frac{ {x}^{2}  + 1}{ {x}^{2} - 1 }=     \frac{2.secA(secA + tanA)}{2.tanA(tanA + secA)}

  =  > \frac{ {x}^{2}  + 1}{ {x}^{2} - 1 }=      \frac{secA}{tanA}

  =  > \frac{ {x}^{2}  + 1}{ {x}^{2} - 1 }=       \frac{1}{cosA}  \times  \frac{cosA}{sinA}

  =  > \frac{ {x}^{2}  + 1}{ {x}^{2} - 1 }=       \frac{1}{sinA}

  =  > \frac{ {x}^{2}  + 1}{ {x}^{2} - 1 }=       cosecA

Hence proved .

Similar questions