if sec A +tanA=p then prove that sin A =p square -1÷p square +1
Answers
Answer:
Step-by-step explanation:
sec A + tan A = p ........(Given)
therefore,
p^2 -1 = (Sec A + tan A)^2 - 1 .
therefore,
p^2 - 1 = (sec^2 A + tan^2 A + 2 sec A. tan A) - 1
= sec^2 A - 1 + tan^2 A + 2 sec A. tan A
= tan^2 A + tan^2 A + 2 sec A. tan A
= 2 tan^2 A + 2 sec A. tan A
= 2 tan A (tan A + sec A) .............(1)
p^2 + 1 = (sec^2 A + tan^2 A + 2 sec A. tan A) + 1
= sec^2 A + 1 + tan^2 A + 2 sec A. tan A
= sec^2 + sec^2 + 2 sec A. tan A
= 2 sec^2 + 2 sec A. tan A
= 2 sec A (tan A + sec A) .............(2)
therefore,
p^2 - 1 ===> 2 tan A (tan A + sec A)
p^2 + 1 2 sec A (tan A + sec A)
= tan A / sec A
= sin A/ Cos A
1/ cos A
= Sin A
Hence proved............!!!!