Math, asked by Bhardwajpushkar4936, 11 months ago

If sec A+tanA=x then find the value of sinA

Answers

Answered by shadowsabers03
0

\sec A+\tan A=x\quad\longrightarrow\quad (1)\\\\\\\dfrac {(\sec A+\tan A)(\sec A-\tan A)}{\sec A-\tan A}=x\\\\\\\dfrac {\sec^2A-\tan^2A}{\sec A-\tan A}=x\\\\\\\dfrac {1}{\sec A-\tan A}=x\\\\\\\sec A-\tan A=\dfrac {1}{x}\quad\longrightarrow\quad(2)

\quad

On adding (1) and (2),

\quad

\sec A=\dfrac {\left (x+\dfrac {1}{x}\right)}{2}\\\\\\\sec A=\dfrac {x^2+1}{2x}

\quad

And on subtracting (2) from (1),

\quad

\tan A=\dfrac {\left (x-\dfrac {1}{x}\right)}{2}\\\\\\\sin A\sec A=\dfrac {x^2-1}{2x}\\\\\\\dfrac {\sin A(x^2+1)}{2x}=\dfrac {x^2-1}{2x}\\\\\\\large\text {$\underline {\underline {\sin A=\dfrac {x^2-1}{x^2+1}}}$}

Similar questions