Math, asked by chintakindivaishnavi, 1 year ago

if sec alfa is 5÷4 verify that tan alfa÷1+tan^2 alfa=sin alfa ÷sec alfa​

Answers

Answered by LovelyG
7

Solution:

Given that ;

 \sec \alpha  =  \dfrac{5}{4}

We know that ;

 \mathrm{ \sec \alpha  =  \dfrac{hypotense}{base}} =  \dfrac{5}{4}

So,

  • Hypotenuse = 5
  • Base = 4

We can calculate perpendicular, using the Pythagoras theorem -

 \mathrm{perpendicular =   \sqrt{h {}^{2} - b {}^{2}  } } \\  \\  \mathrm{perpendicular =   \sqrt{(5) {}^{2} - (4) {}^{2}}} \\  \\  \mathrm{perpendicular =   \sqrt{25 - 16  } } \\  \\  \mathrm{perpendicular =   \sqrt{9 } } \\  \\  \mathrm{perpendicular = 3}

Now,

 \rm{ \sin \alpha =  \frac{p}{h}} =  \frac{3}{5}  \\  \\ \rm{ \tan \alpha  =  \frac{p}{b}  =  \frac{3}{4} }

We have to verify that,

 \rm{ \frac{ \tan \alpha}{1 + \tan ^{2} \alpha  } } =  \frac{ \sin \alpha }{ \sec \alpha } \\  \\ \frac{ \frac{3}{4} }{1 + \left(  \frac{3}{4} \right)^{2}} =  \frac{ \frac{3}{5} }{ \frac{5}{4} }  \\  \\  \frac{3}{4}  \div \left(1 + \frac{9}{16} \right) =  \frac{3}{5}  \div  \frac{5}{4}  \\  \\  \frac{3}{4}  \div \left(  \frac{16 + 9}{16} \right) =  \frac{3}{5}  \times  \frac{4}{5}  \\  \\  \frac{3}{4}  \times  \frac{16}{25}  =  \frac{12}{25}  \\  \\  \frac{12}{25}  =  \frac{12}{25}

Hence, it is verified.

Similar questions