if sec beta +tan beta=p, then find the value of sin beta in terms of p
Answers
Answered by
15
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
let theta =@
sec@ + tan@=p------------------(1)
we know ,
sec^2@-tan^2@=1
(sec@-tan@)(sec@+tan@)=1
hence ,
sec@-tan@=1/p -----------------(2)
now equation (1)and (2)
2sec@=p+1/p=(p^2+1)/p
sec@=(p^2+1)/2p
hence,
cos@=2p/(1+p^2)
hence ,
sin@=(1-p^2)/(1+p^2)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Answered by
15
Answer:
let theta =@
sec@ + tan@=p------------------(1)
we know ,
sec^2@-tan^2@=1
(sec@-tan@)(sec@+tan@)=1
hence ,
sec@-tan@=1/p -----------------(2)
now equation (1)and (2)
2sec@=p+1/p=(p^2+1)/p
sec@=(p^2+1)/2p
hence,
cos@=2p/(1+p^2)
hence ,
sin@=(1-p^2)/(1+p^2)
Similar questions