Math, asked by kachamsrihith5344, 1 month ago

If secθ=(m+n)/√mn, then find sinθ

Answers

Answered by MysticSohamS
0

Answer:

hey here is your solution

pls mark it as brainliest

Step-by-step explanation:

to \: find =  \\ sin \: θ \: (in \: terms \: of \: m) \\  \\  \: secθ \:  =  \frac{m + n}{ \sqrt{mn} }  \\  \\ therefore  \: then\: \\   \\  cos \: θ =  \frac{ \sqrt{mn} }{m + n}  \\  \\ so \: we \: know \: that \\ sin {}^{2}  \: θ = 1 - cos {}^{2}  \: θ \\  \\  = 1 - ( \frac{ \sqrt{mn} }{m + n}  \: ) {}^{2}  \\  \\  = 1 -  \frac{mn}{m {}^{2}  + n {}^{2}  + 2mn}  \\  \\  =  \frac{m {}^{2}  + n {}^{2}  + 2mn - mn}{m {}^{2}  + n {}^{2}  + 2mn}  \\  \\  =  \frac{m {}^{2}  + n {}^{2}  + mn}{m {}^{2}  + n {}^{2} + 2mn }  \\  \\  =  \frac{m {}^{2} + n {}^{2}   + mn}{(m + n) {}^{2} }  \\  \\ taking \: square \: root \: on \: both \: sides \\ we \: get \\  \\ sin \: θ = ± \:  \frac{ \sqrt{m {}^{2}  + n {}^{2}  + mn} }{m + n}

Similar questions