Math, asked by harshini789, 1 month ago

if sec o +tan o =p then prove that sin o =p2-1/p2+1​

Answers

Answered by mayankahir123123
1

Answer:

9. Lime, gravel and carbonate are found in red soil.

Answered by Anonymous
12

Answer:

Formula used :–

 \pink{\boxed{ \green{ \rm({a} + b)^{2}  =  {a}^{2}  +  {b}^{2}   + 2ab}}}

 \blue{ \boxed{{  \rm \orange{{sec}^{2} \theta - 1 =  {tan}^{2} \theta } }}}

 \red{\boxed{ \purple{\tan^{2}  \theta + 1 =  { \sec}^{2}  \theta}}}

 \green{\boxed{ \pink{\frac{1}{ \cos \theta}  =   \sec\theta}}}

  \orange{\boxed{  \blue{\tan \theta =  \frac{ \sin \theta}{ \cos \theta}}}}

Step-by-step explanation:

 \rm \scriptsize \: if \:  sec \theta +tan \theta=p  \: then  \: prove \:  that \:  sin \theta = \frac{ {p}^{2} - 1 }{ {p}^{2}  + 1}

Have Given :-

 \rm sec \theta +tan \theta=p

 \rm   \frac{ {p}^{2} - 1 }{ {p}^{2}  + 1}

 \rm    =  \frac{ {(sec \theta} + tan \theta)^{2} - 1 }{{(sec \theta} + tan \theta)^{2}  +  1}

 \rm     =  \frac{ {sec}^{2} \theta +  {tan}^{2} \theta + 2sec \theta.tan \theta - 1  }{{sec}^{2} \theta +  {tan}^{2} \theta + 2sec \theta.tan \theta  +  1}  \: [ \because \:  ({a} + b)^{2}  =  {a}^{2}  +  {b}^{2}   + 2ab ]

 \rm     =  \frac{( {sec}^{2} \theta- 1 )+  {tan}^{2} \theta + 2sec \theta.tan \theta   }{{sec}^{2} \theta +(  {tan}^{2} \theta+  1) + 2sec \theta.tan \theta  }

 \scriptsize \rm     =  \frac{ {tan}^{2} \theta +  {tan}^{2} \theta + 2sec \theta.tan \theta   }{{sec}^{2} \theta + {sec}^{2} \theta + 2sec \theta.tan \theta  }   \:  [ \because \:  {sec}^{2} \theta - 1 =  {tan}^{2}   \theta \: and \:  \tan^{2}  \theta + 1 =  {sec}^{2}  \theta]

 \rm     =  \frac{2 {tan}^{2} \theta  + 2sec \theta.tan \theta   }{2{sec}^{2} \theta + 2sec \theta.tan \theta  }   \:

 \rm     =  \frac{2 {tan}^{2} \theta  + 2 \tan \theta.sec \theta   }{2{sec}^{2} \theta + 2sec \theta.tan \theta  }   \:

 \rm     =  \frac{2 {tan \theta} \cancel{(\tan \theta   +  sec \theta )}  }{2{sec} \theta  \cancel{(sec \theta + tan \theta )} }

 \rm     =  \frac{ \cancel2 {tan \theta}}{ \cancel2{sec} \theta  }

 \rm     =  \frac{  {tan \theta}}{ {sec} \theta  }

 \rm     =  \frac{  {tan \theta}}{ \frac{1}{ \cos\theta}}  \:  \:  \:  [ \because \:  \frac{1}{cos \theta}  =  sec\theta]

 \rm  =    \tan \theta \times  cos \theta

\rm  =     \frac{sin \theta}{ \cancel{cos \theta}}  \times   \cancel{cos \theta} \:  \:  [ \because \: tan \theta =  \frac{sin \theta}{ \cos \theta} ]

  \rm = sin \theta

Hance Proved

Similar questions