Math, asked by vanikakkar1218, 3 months ago



If sec Q=5/4 , then evaluate

1-tanA/
1+tan A

Answers

Answered by ajayk016732
0

Answer:

1/4

Step-by-step explanation:

As,

secA=5/4, so,

cosA= 4/5

so, sinA= 3/5

1-tanA/1+tanA = 1-SinA/1+sinA = 1/4

Answered by HiteshJoshi7
1

sec =

 \frac{hypotenuse}{base}  =  \frac{5}{4}

then , hypotenuse = 5x & base = 4x

(you \: know \:  \frac{5x}{4x}  =   \frac{5}{4} )

Now,

 {h}^{2}  =  {p}^{2}  +  {b}^{2}

so ,

here ,

 {5x}^{2}  =  {p}^{2}  +  {4x}^{2}  \\ 25 {x}^{2}  - 16 {x}^{2}  =  {p}^{2}  \\ 3x=   \sqrt{9 {x}^{2} }  = p

so perpendicular = 3x

Now, tan =

 \frac{perpendicular}{base}  =  \frac{3x}{4x}  =  \frac{3}{4}  \\ tan \:  =  \frac{3}{4}

now,

 \frac{1  -  \frac{3}{4} }{1 +  \frac{3}{4} }  =  \frac{ \frac{1}{4} }{ \frac{7}{4} }  =  \frac{4 \times 1}{7 \times 4}  =  \frac{1}{7} or \: 0.14(approx.)

hope it's correct

Similar questions