Math, asked by DARSHAN142005, 6 months ago

If sec θ – tan θ = 1/3, then find the value of (sec θ + tan θ).​

Answers

Answered by punam35
6

Answer:

3

Step-by-step explanation:

sec square theta - tan square theta = 1

, (sec theta + tan theta )( sec theta - tan theta) = 1

, ( sec theta+tan theta) × 1/3 = 1

, ( sec theta+ tan theta)= 3

Answered by eddie33
2

Step-by-step explanation:

given ,sec ∅-tan∅ =1

using , sec²∅= tan²∅+1

sec²∅-tan²∅=1

 (\sec(x)  +  \tan(x) )( \sec(x)  -  \tan(x) ) = 1 \\ ( \sec(x) +   \tan(x) ) =  \frac{1}{(  \sec(x)  -  \tan(x)  )}  \\  \:  \:  \:  \:  \:  \:  \:  =  \frac{1}{1  \div 3}  \\  \:  \:  \:  \:  \:  \:  \:  = 3

Similar questions