If secθ – tanθ= a+1/a-1, then cosθ, equal to
Answers
Answered by
0
Step-by-step explanation:
Rationalise
secθ – tanθ= a+1/a-1 - equation1
(secθ - tanθ)(secθ + tanθ)/(secθ + tanθ) = a+1/a-1
(sec^2θ - tan^2θ) / (secθ + tanθ) = a+1/a-1
sec^2θ - tan^2θ
1/(secθ + tanθ) = a+1/a-1
a-1/a+1 = (secθ + tanθ) - equation 2
solve equation 1 and 2
tanθ = secθ - a+1/a-1
put this value on equation 2
secθ + tanθ = a-1/a+1
secθ = a-1/a+1 - tanθ
secθ = a-1/a+1 - secθ + a+1/a-1
2secθ = a-1/a+1 + a+1/a-1
2secθ = 2(a^2+1)/a^2-1
secθ = (a^2+1) / (a^2-1)
1/cosθ = (a^2+1) / (a^2-1)
cosθ = (a^2-1) / (a^2+1)
Similar questions