Math, asked by trishay434, 2 months ago

if sec ∅ + tan ∅= m and sec ∅ - tan ∅ = n prove that mn = 1
pls prove
pls dont spam ​

Answers

Answered by vanshitajain200
1

Answer:

(secθ+tanθ)=m....(1) and

(secθ−tanθ)=n....(2)

Multiply (1) and (2), we have

⇒(secθ+tanθ)(secθ−tanθ)=mn

⇒(sec

2

θ−tan

2

θ)=mn

∴1=mn

Or mn=1

Hence proved

Answered by ExploringMathematics
1

\rm{m\times n\:is\:equal\:to\:(sec\:\theta+tan\:\theta)(sec\:\theta-tan\:\theta)}

\longrightarrow\rm{mn =(sec\:\theta+tan\:\theta)(sec\:\theta-tan\:\theta) }

\longrightarrow\rm{mn =sec^2\:\theta-tan^2\:\theta\quad...\:Since\:(a+b)(a-b)=a^2-b^2}

\longrightarrow\rm{mn =1/\cos ^{2} \theta-\sin ^{2} \theta/\cos ^{2} \theta\quad...\:Since\:sec\:\theta=1/\cos\theta\:\&\: tan\:\theta=\sin\:\theta/\cos\:\theta}

\longrightarrow\rm{mn =(1-\sin ^{2} \theta)/\cos ^{2} \theta=\cos ^{2} \theta/\cos ^{2} \theta}

\longrightarrow\rm{mn =1\quad...\:Hence\:Proved!}

Similar questions